In-Class Exam \#4 Review Sheet, Covers 11.10, 11.11, 10.1-10.4 Math 280, Vanden Eynden

In problems\#1-5, find the Maclaurin series for fand its radius of convergence. To find each power series, you may use either the direct method (definition of a Maclaurin series, taking several derivatives and finding a pattern) or use known series such as geometric series, binomial series or the Maclaurin series shown in Section 11.10, Table 1, pg 762.

1. $f(x)=x^{2} e^{-3 x}$
2. $f(x)=\frac{x-\sin x}{x^{3}}$
3. $f(x)=2^{x}$
4. $f(x)=\sqrt[3]{1-x}$ (binomial series)
5. $f(x)=(1+x)^{-3}$ (binomial series)
6. Use the Maclaurin series found in \#2 to approximate $\int_{0.1}^{0.4} \frac{x-\sin x}{x^{3}} d x$ to within \mid error $\mid<0.001$.
7. a. Find the degree 3 Taylor polynomial, $T_{3}(x)$ for the function $f(x)=e^{2 x}$ centered at $a=-1$.
b. Use your Taylor polynomial of degree 3 from above to approximate the value of $e^{-2.2}=e^{2(-1.1)}$. Round your approximation to 4 decimal places.
8. a. Find the degree 4 Taylor polynomial, $T_{4}(x)$ for the function $f(x)=\ln \left(x^{2}\right)$ centered at $a=2$.
b. Use your Taylor polynomial of degree 4 from above to approximate the value of $\ln \left(1.8^{2}\right)$.

Round your approximation to 4 decimal places.
9. a. Fill in the table of values below for the given parametric equations. Then graph the curve, including arrows indicating direction of movement.
$x=t-1 \quad y=\frac{t}{t-1}$

t	x	y
1.5		
2		
2.5		
3		
3.5		
4		
4.5		
5		

b. Now, eliminate the parameter to obtain a Cartesian equation for the curve.
10. Find a polar equation for a circle centered at $(0,0)$ with radius 3 .
11. Use the graphs of $x=f(t)$ and $y=g(t)$ below to sketch the parametric curve $x=f(t), y=g(t)$. Indicate with arrows the direction in which the curve is traced as t increases.

12. Find the equation of the tangent to the curve $x=t^{3}+6 t+1, \quad y=2 t-t^{2} \quad$ at $t=-1$
13. Use your graphing calculator to estimate the coordinates of the lowest point on the curve $x=t^{3}-3 t, y=t^{2}+t+1$. Then use calculus to find the exact coordinates.
14. Find $\frac{d^{2} y}{d x^{2}}$ for the curve $x=t+\sin t, y=t-\cos t$. Is this curve concave up or concave down at the point ($0,-1$)?
15. Over what interval(s) of t is the parametric curve defined by $x=1+t^{2} \quad y=t-t^{3}$ concave downward?
16. Find the length of the curve defined by $x=3 t^{2}, y=2 t^{3}$ on the interval $0 \leq t \leq 2$.
17. Consider the graph shown below in rectangular coordinates that relates the variables r and θ.

Sketch the corresponding polar curve on the polar grid.

In problems 18, 19, 20 use the polar grids below to sketch your graphs. Be accurate!

18. Sketch the polar curve $r=3+\cos 3 \theta$. Use your calculator to help.
19. Sketch the polar curve $r=5 \sin 3 \theta$. Use your calculator to help.

What is this curve called? \qquad
20. Shade/sketch the region defined by $r>2$ and $\pi \leq \theta<\frac{5 \pi}{4}$
21. Find the points of intersection for the curves $r=2$ and $r=4 \cos \theta$. State the points using polar coordinates. Then convert those same points to Cartesian coordinates (x, y).
22. Find a Cartesian equation for the curve represented by the polar equation $\sin \theta+\cos \theta=r$.
23. Find the area enclosed by the inner loop of the curve $r=1-2 \sin \theta$.
24. Find the area of the region that lies inside both of the circles $r=2 \sin \theta$ and $r=\sin \theta+\cos \theta$.
25. Find the area of the region inside the large loop and outside the small loop of $r=1+2 \cos \theta$.

Set up the integral(s) required to calculate this area ONLY. (you can use calculator or wolframalpha.com to find the actual area)

Taylor series of the function \boldsymbol{f} centered at \boldsymbol{a} :

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

The Binomial Series: If k is any real number and $|x|<1$, then

$$
\begin{gathered}
(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n} \\
=1+k x+\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\frac{k(k-1)(k-2)(k-3)}{4!} x^{4}+\ldots
\end{gathered}
$$

$$
\text { where }\binom{k}{n}=\frac{k(k-1)(k-2)(k-3) \cdots(k-n+1)}{n!} \text { are called binomial coefficients. }
$$

First Derivative of parametric equations: $\quad \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \quad$ if $\frac{d x}{d t} \neq 0$

Second Derivative of parametric equations:

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}} \quad \text { if } \frac{d x}{d t} \neq 0
$$

Arc Length for parametric equations, for $\alpha<t<\beta: \quad L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$

First Derivative of polar equations:

$$
\frac{d y}{d x}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

Area of polar region:

$$
A=\int_{a}^{b} \frac{1}{2}[f(\theta)]^{2} d \theta=\int_{a}^{b} \frac{1}{2} r^{2} d \theta
$$

Half-Angle Formulas

$$
\begin{aligned}
& \sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \\
& \cos ^{2} x=\frac{1}{2}(1+\cos 2 x)
\end{aligned}
$$

